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1. Introduction

Abstract

Metaphysicians as well as philosophers of science often turn to particle physics
for a description of the most fundamental entities in our universe. The common
assumption is that it readily provides one clear account of what those fundamental
building blocks are, how they come together to form more complicated objects, and,
conversely, how compound objects can be seen as being composed of those fundamen-
tal entities. I argue that the picture is more difficult: fundamentality is commonly
held to be a relational notion, explicating an ontological hierarchy between compound
and fundamental entities. However, particle physics allows for more than one meta-
physically meaningful procedure to decompose a system into parts, fundamental or
otherwise. I will identify and interpret two commonly used decomposition proce-
dures for quantum systems and show that they lead to different results for what the
parts of a quantum system might be and thus give rise to conflicting conceptions of
fundamentality.

On the one hand, there is the tensor product decomposition, which is often used to
identify as parts of the system clusters of properties that are statistically independent
of each other in the sense that a measurement on one of the clusters does not disturb
a measurement on other ones. On the other hand, the direct sum decomposition
describes the compound system as a mixture of subsystems which each differ in
some of the fundamental properties that characterize quantum systems in particle
physics—for example electric charge or colour charge. This decomposition also relates
to Wigner’s “definition” of elementary particles. These represent two very different
ways of decomposing a system into its fundamental parts, with disagreeing results,
and from the perspective of particle physics both are, often simultaneously, equally
valid. I take this to provide a sense in which, as a result, particle physics on its own
is not enough to determine the fundamental ontology of the world. This shows that
there are conventional choices involved in finding the fundamental parts of an object
which have not yet been widely recognised by either metaphysicians or philosophers
of science.

1 Introduction

Metaphysicians as well as philosophers of science often turn to modern particle
physics for an account of the most fundamental entities in our universe. Tahko
(2018, p. 1) observes that many think “that particle physics aims to describe the
fundamental level of reality, which contains the basic building blocks of nature.”
Oppenheim and Putnam (1958, p. 9) put elementary particles at the very bottom
of their mereological hierarchy of material entities. Inman (2017, p. 75) claims that
“[t]hough the strong reductive letter of Oppenheim and Putnam’s account of the
mereological ordering of reality has been largely abandoned [...], many contemporary
philosophers are apt to endorse something similar in spirit” and points to Kim (1998,
p. 15) who asserts that “[t]he bottom level is usually thought to consist of elementary
particles, or whatever our best physics is going to tell us are the basic bits of matter
out of which all material things are composed” and that “[t]he ordering relation that
generates the hierarchical structure is the mereological (part-whole) relation.”
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1. Introduction

The common assumption is that particle physics readily provides an account of
what those fundamental building blocks are and how they come together to form
more complicated objects, and, conversely, how compound objects can be seen as
being composed of those fundamental entities. Even those who examine mereology
of quantum theories in more detail, such as Calosi and Tarozzi (2014), tacitly assume
that matters are settled in physics regarding how to decompose a given system into
its fundamental constituents in the quantum realm.

I argue that this is mislead: particle physics allows for more than one meta-
physically meaningful procedure to decompose a system into parts, fundamental or
otherwise. In particular, I will explore two decomposition procedures for quantum
systems and show that they lead to different results for what the parts of a system
might be, thus giving rise to conflicting conceptions of fundamentality. From this I
will conclude that particle physics on itself can not provide an account of the funda-
mental level of reality, and that more interpretational and metaphysical work needs
to be done in order to arrive at such a description.

More concretely, I will argue that there are situations where the formal de-
scription of a given system in particle physics can be decomposed according to two
very different mathematical procedures: the tensor product decomposition identifies
parts of the system with clusters of properties that are statistically independent of
each other in the sense that a measurement on one of the clusters does not disturb
measurements on other ones. On the other hand, the direct sum decomposition
describes the compound system as a mixture of subsystems which each differ in one
of the fundamental properties that particle physics predicts quantum systems to
have—for example electric charge, or color charge. For example, a simple structure
like the model used to describe a hydrogen atom can be viewed as either two sta-
tistically independent spin-1

2 degrees of freedom (the electron and the proton) or a
mixture of a spin-0 system, associated with anti-aligned spins of proton and elec-
tron, or a spin-1 system associated with two aligned spins, where the theory does
not predict which of the two possibilities in the mixture will actually obtain. That
is, the behaviour of a hydrogen atom is both determined by two independent spin-1

2

systems as well as a spin-0 and a spin-1 system. These represent two very different
ways of decomposing the system into its fundamental parts with disagreeing results,
and from the perspective of particle physics both are simultaneously equally “cor-
rect.” Hence, metaphysicians and philosophers of physics need to specify in more
detail which of the conceptions of fundamentality they refer to when claiming that
particle physics describes the fundamental level of reality, or an account of how two
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2. Fundamentality and quantum systems

conflicting notions of fundamentality can coexist is needed.
I will proceed as follows: in Section 2, I will first discuss the metaphysics of

fundamentality and extract what appears to lie at the core of various accounts,
namely a relational concept of ontological priority. Then, I outline the formal de-
scription of the basic objects of inquiry of particle physics, quantum systems. The
two sections after that then rehearse the two ways in which such a quantum system
could be decomposed from a general perspective, and examine how each of them
can be justified as corresponding to a relation characterizing ontological hierarchy.
Section 5 will then look at the context of particle physics, where the framework of
group representations enables us to see exactly where the two notions of fundamen-
tality will clash. Finally, in Section 6, I will show that the two notions disagree on
the fundamental constituents that they ascribe to some systems, and conclude that
this is in conflict with the expectation that particle physics settles the question of
fundamentality for a naturalistic metaphysics.

2 Fundamentality and quantum systems

The term “fundamental” is used in a wide variety of senses in the metaphysics
literature, commonly1 denoting that something is “basic or primitive” (Tahko 2018,
p. 1). Most approaches to fundamentality are relational at their core: as Schaffer
(2010, p. 36) observes, “[a]nyone who is interested in what is fundamental [...] must
understand some notion of priority.” That is, fundamentality is connected to a
priority relation that holds between the more and less fundamental entities.

This relation is often taken to be that of grounding (see e. g. Cameron 2016;
Mehta 2017; Schaffer 2009) although this is not accepted by everyone (e. g. Wilson
2014). Some think that there can be multiple such relations: Bennett (2017), for
example, argues for a plurality of “building relations” that apply in different circum-
stances. And others argue (e. g. Fine (2001) and Wilson (2014)) that fundamentality
is a primitive notion not further analysable, though still characterizable, perhaps in
terms of other relations. Whatever the details of the account of fundamentality
might be, common to most approaches—and the only necessary assumption for my
argument—is that they require such a relation. For simplicity I shall refer to this
relation as the priority relation, giving rise to (or being given by) a notion of (de-
)composition into fundamental constituents—the reader is welcome to substitute

1For a survey of notions of fundamentality in metaphysics and philosophy of physics, see Mor-
ganti (2020a,b).

3



2. Fundamentality and quantum systems

their favourite fundamentality relation, if they so wish.
There are two different ways considered in the literature to define what is fun-

damental using a given priority relation. On the one hand, we can say that x is
fundamental if and only if there is no (other) y that is prior to x—this is sometimes
referred to as the independence conception of fundamentality (e. g. in Tahko (2018)
and Bennett (2017, ch. 5)). On the other hand, one can take x to be fundamental
just in case it is a member of a set (called a minimal basis) B, which is such that
for every other entity y ̸∈ B, there are some b ∈ B which are prior to y (and which
are the only objects prior to y). How the two definitions are related is a topic of de-
bate,2 but, again, we just note that both of them employ a priority relation between
fundamental and non-fundamental entities.

Applied to particle physics, the independence conception of fundamentality cor-
responds to the claim that elementary particles are not ontologically secondary to
some even more fundamental particles in that they don’t have structure which could
be used to divide them up even further. The notion that elementary particles form
a minimal basis of the material world corresponds to the claim that all of matter is
made up of these particles, in other words, that they feature as the “building blocks
of reality.”

Both of these claims are frequently made in the literature; however, in the
following I will argue that one is mislead thinking that particle physics readily
provides these notions. I will examine two procedures that relate descriptions of
quantum systems to what one could think of as their component parts—one based
on the direct sum, ‘⊕’, and the other one applying the tensor product, ‘⊗’—and will
show that each can be given a relevant metaphysical interpretation. In the context
of particle physics, which extensively employs the mathematical framework of group
representations,it will be shown that these notions of fundamentality disagree on
the fundamental parts of some systems.

Before we can continue, however, we need to clarify some technical concepts
used in particle physics. The basic theoretical framework which underpins particle
physics is quantum theory,3 which describes the kinematics and dynamics of (quan-
tum) systems. For our purposes, a quantum system is described by a state space H,
which is a complex, separable Hilbert space, together with an algebra of observables

2See e. g. Leuenberger (2020), who argues that whether the two definitions agree on the entities
they designate as fundamental depends on other metaphysical commitments.

3I shall refer to non-relativistic quantum mechanics and quantum field theory both as quantum
theories, and will be more specific if we need to pick either one of them.
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2. Fundamentality and quantum systems

A, standardly4 chosen to consist of a suitable algebraic completion of a set of self-
adjoint operators on H—often, especially in non-relativistic quantum mechanics,
this will be the full algebra of bounded operators of H, denoted by B(H). Together,
these mathematical objects allow us to calculate expectation values of observables
in a given state, which are interpreted to represent the mean outcome of the exper-
iments associated with those observables, as well as transition probabilities, which
specify the likelihood of the system to transition from one state into another. As
a simple example, the Hilbert space H = C2 together with an algebra A generated
by the Pauli-spin-matrices describes a spin-1

2 system with spin as its only degree of
freedom.5 This models, for example, the spin of an electron or proton, or an abstract
qubit.

Many metaphysical conceptions of what the fundamental entities of the world
might be are compatible with this characterization of a “system”: object ontologies,
for example, can take them to be descriptions of material entities. Alternatively,
there are constructions of Hilbert spaces available that allow for interpretations that
take facts or propositions as the fundamental constituents of reality,6 and similarly
one can adopt other metaphysical views. Motivated in part by considerations about
symmetry groups that we will focus on in Section 5, many take structural realism
as their chosen ontology of quantum physics, like French and Ladyman (2003),
Kantorovich (2009), Lyre (2004), and McKenzie (2020). Here, I shall use the term
system to refer to a broad variety of what fundamental entities could be and thereby
remain neutral on the debate on the correct ontology of quantum theories. For
example, regardless of whether one considers quantum field theories to be about
particles or fields, my considerations apply in both cases, mutatis mutandis. Again,
the reader is welcome to substitute their favourite ontology of quantum theories.

We are now ready to look at the decomposition relations available in quantum
physics in general, starting with the tensor product in the next section, and con-
tinuing with the direct sum in Section 4. In Section 5 we will then focus on the
particular theoretical frameworks used in particle physics, to further motivate the
use of the direct sum decomposition as a natural way to define fundamentality in
the context of elementary particles, and to prepare the way for Section 6, where we
see how the two notions disagree.

4For generalizations see Roberts (2018).
5Note that in this case the algebra of observables is the full algebra of (bounded) operators on

C2, that is, A = B(H) = C2×2.
6See e. g. Jauch (1968) for a construction of the formalism starting with a system of propositions.
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3. Tensor product decomposition

3 Tensor product decomposition

The tensor product is introduced in first textbooks on quantum mechanics as the
standard way to model compound systems, it is one of the central notions in the
literature on entanglement,7 and it is widely used in constructions in quantum field
theory as well. I start by reviewing the formal construction, and will then look
at one way to justify the tensor product as a metaphysically meaningful priority
relation.

3.1 The tensor product

The tensor product can be formed for both Hilbert spaces as well as algebras of
observables. One way to obtain the tensor product H1 ⊗ H2 of two Hilbert spaces
H1,H2 is to consider the Hilbert space which, as a vector space, is spanned by
vectors of the form ei ⊗fj, where ei denote the basis vectors of H1 and fj denote the
basis vectors of H2. The inner product on the tensor product space is given by the
product of the individual inner products: ⟨u ⊗ x, v ⊗ y⟩H1⊗H2 := ⟨u, v⟩H1⟨x, y⟩H2 ,

where u, v ∈ H1 and x, y ∈ H2. For finite-dimensional complex vector spaces Cm

and Cn, their tensor product is isomorphic to the vector space Cmn, so for our
example of H1 = H2 = C2 we would find the tensor product of two spin-1

2 systems
to be C2 ⊗ C2 ∼= C4.

The algebra of observables of this joint system can be constructed as the algebra
generated by operators of the form A1⊗I2 and I1⊗A2 where I1 and I2 are the identity
maps on H1 and H2, respectively, whereas A1 is from the algebra of observables A1

and A2 is taken from the algebra A2. Conversely, if one constructs the tensor
product algebra A1 ⊗ A2 of two algebras there are natural embeddings of the factor
algebras into the tensor product given by ι1 : A1 → A, a 7→ a ⊗ 1A2 and similarly
for A2, so that the choice above for algebras of observables agrees with the standard
tensor product of the factor algebras. Furthermore, there is an isomorphism relating
B(H1) ⊗ B(H2) ∼= B(H1 ⊗ H2). Thus, if the algebra of observables consists of
all bounded operators on H1 and H2, respectively, then the tensor product of the
algebras of observables will again be all the bounded operators of the tensor product
space.

Consider the toy example of the Hilbert space H = C4 with the algebra of
observables consisting of all bounded operators, i. e. A = C4×4. Then this system

7See for a conceptual overview Earman (2015).
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3.2. Statistical independence

could be viewed as modelling two spin-1
2 systems, as C4 ∼= C2 ⊗ C2, and the corre-

sponding algebras would be again the full algebras of bounded operators on each C2

subspace.
From a purely mathematical point of view, given a Hilbert space whose dimen-

sion is not a prime number, we can thus find non-trivial factor spaces such that the
Hilbert space is the tensor product of those factor spaces. That is, given a system
modelled by such a Hilbert space, we can identify the factor spaces with subsystems
of that system according to the tensor product decomposition. If the algebra of
observables of the compound system is the full algebra of bounded operators, then
the algebras of the factor spaces will again be the respective algebras of all bounded
operators. If the algebra of the compound system is not the full algebra, then there
might not be a suitable tensor product decomposition and the system might must
be regarded as fundamental according to this notion of fundamentality.

3.2 Statistical independence

How can we interpret the tensor product decomposition of a given quantum system
into component parts? One way to arrive at this construction is the requirement of
the subsystems being statistically independent from each other.8 The idea is that
parts of a compound system should be suitably independent of each other to prop-
erly call them parts. Hence, in looking for the components of a compound system
one tries to find clusters of properties (or in the language of quantum mechanics:
subalgebras of the algebra of observables) that are statistically independent of each
other in the sense that a measurement on one cluster does not disturb the results of
measurements on another one.

One of the simplest conditions9 expressing statistical independence used in the
framework of quantum theories is that the observables for each of the subsystems
commute: that is, for all A1 ∈ A1, A2 ∈ A2 we have that [A1, A2] = 0, where
A1,A2 are the algebras of observables associated with the respective subsystems,
embedded in the algebra of the compound system. One can arrive at this require-
ment in multiple ways. Malament (1996, p. 5, footnote 5) for example shows
that two observables commuting is equivalent to the conditional probabilities, con-

8This notion of independence should not be confused with metaphysical independence intro-
duced in section 2.

9See for an overview of such conditions in the context of quantum theories Summers (2009).
The notion of “statistical independence” there is only a special case of what I consider here to be
a broader category of possible requirements on subsystems.
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3.2. Statistical independence

ditioned on the measurement of the respectively other observable, being equal to
the non-conditional probabilities. To illustrate, consider two observables A,B and
the probabilities of the values of these observables being in certain sets a, b ⊆ R,
denoted by P (A ∈ a) and P (B ∈ b). Consider now the probability P (B ∈ b|A ∈ a),
i. e. the conditional probability of the value of the observable B being in set b, given
one already measured the system with respect to observable A and that value was
in a. This can be calculated using the so-called “Lüders rule”, and Malament shows
that P (B ∈ b|A ∈ a) = P (B ∈ b) is equivalent to the associated operators A and B
commuting. That is, if (and only if) the observables are commuting, the predictions
of the theory for outcomes of measurements of these observables are independent
of each other in the sense that even if one measures A, the resulting probability
distribution for B will still remain as if one did not measure A and vice versa.

Unfortunately, the commutativity of the algebras of observables of the compo-
nent system in the compound system is not enough to guarantee that the compound
system is the tensor product of the component systems. One needs stronger con-
ditions on the algebras, and various such conditions are discussed in the literature.
I shall only mention the case of one of the strongest of these conditions10, the so-
called split-property: two von Neumann-algebras11 A1,A2, are said to satisfy the
split property just in case there exists a Type I factor12 F such that A1 ⊂ F ⊂ A′

2,
where A′

2 denotes the commutator of A2, that is, all observables in A that com-
mute with all elements of A2. In the case where both A1 and A2 are Type I factor
algebras, which is the case in non-relativistic quantum mechanics or when we are
dealing with finite-dimensional Hilbert spaces, the split property implies that the
smallest algebra containing both A1 and A2, commonly denoted as A1 ∨ A2 is ac-
tually isomorphic to the tensor product of the two (in the sense of von Neumann
algebras).13 That is, in this case the compound system containing only the two
component systems is given by the tensor product.

Hence, in the cases we are interested in here, if two von Neumann algebras
satisfy statistical independence in form of the split property, then the compound

10Discussed in both Summers (2009) and Earman (2015).
11A von Neumann-algebra is an algebra of bounded operators on a Hilbert space that is closed

in the so-called weak operator topology.
12A central result for von Neumann algebras is that each such algebra is isomorphic to a direct

integral (a generalization of the direct sum) of so-called factors, which are classified into three
Types (I-III). Every B(H) is a Type I factor. See for more details on this topic e. g. Haag (1996,
Section III.2).

13See for example theorem 4.1 in Summers (2009, p. 8), together with the fact that for Type I
factors the tensor product of von Neumann algebras agrees with the algebraic tensor product used
here.
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4. Direct sum decomposition

algebra will be the tensor product of the two. This motivates the tensor product
as a construction from the requirement of independence of component parts in a
compound system. Conversely, if we are given a system and we want to find its
parts, then we can look for those which are in this sense independent of each other.

Note, that not every decomposition of a Hilbert space into a tensor product can
be given a physical interpretation—when we turn to group representations later,
this fact can be formulated more precisely. Additionally, such a decomposition is
not unique for a system: there could be several different possible ways how to view
a given Hilbert space as the tensor product of factor spaces. This notion is explored
in the literature on “virtual subsystems” in quantum information theory, see for
example Zanardi (2001).14 However, it should be noted that this is a different claim
from my main argument: whereas virtual subsystems concern the non-uniqueness of
decompositions once one has chosen a fixed decomposition procedure (namely the
tensor product),15 I argue here that the tensor product is not the only way to look
at the decomposition of a quantum system in principle.

In sum, considering the fact that the tensor product is often used by physicists
to model the relation of a compound system to its parts, and since this can be un-
derstood conceptually as arising from the statistical independence of the component
systems, I take the tensor product to be a priority relation in the sense of Section
2. This gives rise to a meaningful notion of fundamentality in particle physics: a
compound system can be broken into its fundamental components by considering
tensor product factors as associated with statistically independent systems, and, if
it cannot be broken down any further it should be considered fundamental. Con-
versely, fundamental systems can be composed into compound systems by using the
tensor product construction.

4 Direct sum decomposition

The other construction that I claim is suitable as a relation giving rise to a notion of
fundamentality emerges in cases of systems featuring so-called superselection rules.
For our purposes,16 these are systems where the algebra of observables is, in a

14That these systems might not be so “virtual” after all is suggested in contexts of quantum
optics, see for example Reck et al. (1994).

15Of course, the fact that this is a choice is not usually made explicit, which is one of my main
criticisms in this paper.

16See Earman (2008) for an outline of different ways to define superselection and philosophical
considerations thereof.
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4.1. The direct sum

specific way, a proper subset of the full algebra of all bounded operators on the
Hilbert space, i. e. cases in which A ⊊ B(H). In these circumstances, the Hilbert
space will decompose into a direct sum of superselection sectors, which we can then
interpret as component parts prior to the compound system.

In the following I will, as in the previous section, outline the technical construc-
tion first and then present a way to interpret and motivate it. Then, in Section
5, I will give another justification using the mathematical framework of group rep-
resentation theory, which is motivated forcefully by its use in the standard model
of particle physics. This will allow us to see the most powerful formulation of my
argument, where the two decomposition relations actually disagree on the very same
systems.

4.1 The direct sum

The direct sum of two Hilbert spaces H1 ⊕ H2 = H is given by the Hilbert space
whose basis is the disjoint union of the bases of the summands. That is, if ei are the
basis elements of H1 and fj are the basis elements of H2 then H is spanned by the
elements {e′

i, f
′
j}, where the dash denotes that even if some eq = fl, they are taken

to be distinct elements in the direct sum space. The vectors in the sum vector space
can then be written as x = ∑

i cie
′
i + ∑

j kjf
′
j, although one usually uses the notation

ei ⊕ fj instead of e′
i + f ′

j. The inner product of this space is extended accordingly
as the sum of the inner products of the component spaces. For finite-dimensional
Hilbert spaces Cm,Cn this means that Cm ⊕ Cn ∼= Cm+n, that is, the dimension
of the direct sum is the sum of the dimensions of the summands. The algebras of
observables of the sum vector space arise naturally as the direct sums of the algebras
of the summand spaces; in the finite-dimensional case the operators are realized as
block matrices.

It is important to note that the description of a quantum system is always given
by a Hilbert space and an algebra of observables, together. Consider again the
toy example of H = C4. This space can obviously be viewed as the direct sum
C4 ∼= C2 ⊕ C2 of H1 = H2 = C2. However, even if we consider the two summand
spaces Hi to be equipped with algebras of observables that contain all bounded
operators of C2 (which, of course, are just all two-by-two matrices), then the direct
sum of those algebras of observables would still not be the the full algebra of four-
by-four matrices. Put differently, if the quantum system is modelled by the Hilbert
space H = C4 equipped with an algebra of observables that contains all bounded
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4.2. Superselection and mixed states

operators of C4, then the direct sum construction is not available as a decomposition
of quantum systems. Hence, this decomposition, similar to the case of the tensor
product, is not available in all situations. Again, when we consider all of this in the
more concrete setting of particle physics, those difficulties can be addressed.

Note also that the tensor product space C2 ⊗ C2 ∼= C4 is formally the same
vector space as the direct sum of the two spaces, C4 ∼= C2 ⊕ C2. However, the
basis vectors of the direct sum are given by the disjoint union of the summand
bases, i. e. C4 = ⟨e1, e2, f1, f2⟩ whereas in the tensor product space the basis is
C4 = ⟨e1⊗f1, e1⊗f2, e2⊗f1, e2⊗f2⟩. Hence, the relationship between the compound
space and the component spaces is entirely different in the two cases. Again, it
should be noted that the algebras of observables will also differ in the two cases if
we use the constructions as composition procedures.

4.2 Superselection and mixed states

How can we interpret this decomposition physically? As mentioned in the intro-
duction to this section, the situations17 in which this decomposition is available are
those in which superselection occurs. In these cases the algebra of observables is
missing some operators, namely exactly those that would superpose states from dif-
ferent superselection sectors or transform a state contained in one of the sectors into
a state in different sector. The sectors are all subspaces and taken together exhaust
the whole Hilbert space.

If the Hilbert space and algebra of observables arise from the direct sum of two
Hilbert spaces and associated algebras respectively, then it is easy to see that in
general superselection occurs: all observables in this case are of the form A1 ⊕A2 for
A1 ∈ A1, A2 ∈ A2 where A1,A2 are the algebras of observables of the two component
systems. Since they act separately on the direct sum components of vectors, that is
(A1 ⊕A2)(ψ1 ⊕ψ2) = (A1ψ1) ⊕ (A2ψ2), components from different subspaces cannot
be mixed by such observables.

Mixed states are, roughly speaking, states that are not contained in one single
sector of such a Hilbert space, as opposed to pure states, which are. Hence, if
a superselection rule is present, linear combinations of pure states can result in

17For the following mathematical characterizations of these notions we shall restrict ourselves to
ordinary quantum mechanics, explicitly excluding quantum field theory—the mathematics for the
latter case is considerably more difficult, but the conceptual conclusions for our purposes remain
largely the same. See Earman (2015, Section 2) for an outline of the differences for superselection
rules, and Ruetsche (2004, Section 3) in the case of mixed states. I am also only considering here
what Earman (2015) calls “weak superselection”, ignoring other senses of superselection.
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4.2. Superselection and mixed states

mixed states, namely in case the pure states are taken from different superselection
sectors.18 For direct sums of models of quantum systems we thus have that they
lead to superselection rules, which in turn allow for mixed states of systems to occur.

Systems in mixed states built from states in different sectors suggest an in-
terpretation in terms of being non-fundamental: in a sense, they are “forbidden”
combinations of different component states of a system. Although the interpreta-
tion of mixed states is a topic of philosophical debate, I will just follow Ruetsche
(2004, Sect. 3) and outline some, that are often brought forward in the contexts
that are relevant to our discussion here.19 Systems that allow for superselection are
usually interpreted as mixtures of component systems and model situations in which
either the exact state of the system is not specified,20 or there are multiple systems
in an ensemble, each in a unique state.21 That is, on one possible interpretation, the
mixture models the state of a system before a measurement of a property that is not
known to allow for superpositions (such as the charge quantum numbers), but the
exact value of that property is unknown. A mixed state on this account represents
a system before a measurement that could distinguish which sector that system is
in. Another possibility is that mixed states model an ensemble of systems, each in
a definite state, but the mixed state describing the whole ensemble.

Applied to group representations, which we will encounter below, Baker and
Halvorson (2010, p. 103) interpret the direct sum X⊕Y of two such representations
X and Y as modelling “a mixture of possible charges, so that [the system] may
have either charge X or charge Y ; the theory doesn’t tell us which”. That is,
the compound system X ⊕ Y is interpreted as being decomposable into the two
fundamental systems X and Y , and the theory does not explicitly tell which of the
two possibilities is realized. Whatever interpretation one favours, on all of them
the system itself is compound, and the components of the mixture are structures
metaphysically prior to and required for the very definition of the compound system.
Thus, one can interpret the compound system as being decomposable into the parts
given by this procedure.

18Formally, mixed states are defined on the algebra of observables as those states, which can be
written as a non-trivial convex combination of other states—but we shall not get into too deep
technical details here. For our purposes it suffices to think of mixed states as those arising from
superpositions of pure states.

19For a more detailed review see Ruetsche (2004). We are here only dealing with cases of what
she calls “ordinary quantum mechanics”.

20That is, not specified for whatever reason—mixed states are sometimes used to model situations
in which the specific state is not known, or in which one wants to be ignorant about it.

21For a more detailed review of possible interpretations of mixed states, see Ruetsche (ibid., Sect.
3).
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5. Particle Physics

One objection to this interpretation of the direct sum as a decomposition relation
might be that states in a direct sum can be mixed states, but they don’t need to be:
the system could also be in a pure state contained in one of the superselection sectors,
and then there is obviously no interpretation in terms of ensembles or unknown
mixtures available. This is of course true, but on the level of the state space and
algebra of observables the system is conceived as a mixture structurally, and in this
sense it is decomposable into more fundamental parts. The particular state the
system is in does not matter to our considerations, since we assume that the state
space and algebra of observables are given, and there is no point in specifying a
state space larger than necessary just to introduce superselection but then ignore
all sectors but one.

5 Particle Physics

So far, we have seen two different decompositions that are possible in quantum
physics: a system might turn out to be the tensor product of statistically indepen-
dent subsystems, or it might be a direct sum and represent a mixture of component
systems. In some cases, though, the notions are somehow separate and apply in dif-
ferent circumstances. For example, if the algebra of observables is the full algebra of
bounded operators, then there cannot be a direct sum decomposition. In contrast,
if superselection is present, and thus the direct sum decomposition is possible, then
subsystems that are tensor product factors also need to exhibit superselection rules
individually. Surely, then, one might respond, in practice it will be clear which one
a system is: a compound of independent parts, or a mixture of possibilities.

First, note that this is not an objection to my argument that particle physics
does not give rise to a unique notion of fundamentality because it does not feature
a unique decomposition relation. The two accounts of decomposition that I present
here are conceptually vastly different, so it is still interesting to look at how natu-
ralistic metaphysical conceptions of fundamentality should incorporate this fact of
particle physics. But even more, I will show in the following that within the frame-
work of group representation theory, which is widely employed in particle physics,
the two notions actually disagree in a very strong sense: I will discuss how a system
can be decomposable via both the direct sum as well as the tensor product construc-
tions in the same circumstances, with different constituent systems arising. This,
then, is a clear problem for the hope for a simple and unique priority relation for
the metaphysics of fundamentality arising directly from particle physics.
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5.1. The Standard Model

In this section we will look at the standard model and see how the direct sum
decomposition arises naturally from the ontology of the theory: the first two subsec-
tions will introduce the mathematical framework of group representation theory, and
subsection 5.3 then discusses how so-called irreducible representations arise naturally
as the fundamental entities of particle physics on the direct sum decomposition. In
Section 6 I will finally show how the two decompositions disagree and discuss some
philosophical consequences of this incompatability.

5.1 The Standard Model

The standard model of particle physics comprises a set of theories that together
predict several different types of elementary particles,22 neatly arranged according to
a few properties such as mass, spin, electric charge and other “generalized” charges.
Each elementary particle is characterized by the values of these properties: the
electron, for example, is a spin-1

2 particle with an electric charge of −1, weak isospin
of −1

2 , weak hypercharge of −1, a mass of about 9.11 × 10−31kg and a color charge
of 1. Mathematically, these quantum numbers correspond to labels of so-called
irreducible representations of symmetry groups, so the color charge of the electron
1 is not the natural number 1 but the label of the one-dimensional representation
of the global color gauge group, and similarly for the other charges.23 It is in this
sense that one can say that the ontology of the standard model is determined by
these symmetry groups and their representations.

This account is the basis for a wide-spread “definition” of elementary particles,
summarized here by Ne’eman and Sternberg:24

Ever since the fundamental paper of Wigner on the irreducible rep-
resentations of the Poincaré group, it has been a (perhaps implicit) defi-

22The counting depends a bit on the author: David Jeffery Griffiths (2008, p. 50) counts 61
including the then-to-be-discovered Higgs particle; Thomson (2013, Ch. 1) describes the more
usual 12 fermions and 5 bosons. The differences are due to whether one considers certain particles
as states of one unified particle or as separate particles proper—an issue that certainly deserves
more attention, but is out of scope of this paper.

Furthermore, despite using the term “particle” a few times in this section—because it is how
those systems in particle physics are standardly denoted—I don’t want to commit to any further
consequences one might attach to this notion. For a recent overview of the discussions around
particles in quantum theories see for example Fraser (2021).

23For an alternative account of why the quantum numbers or charges have to be labels of
representations see Baker and Halvorson (2010), though no part of my argument depends on
the differences.

24Ne‘eman and Sternberg (1991, p. 327), quoted in Roberts (2011, p. 51).
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nition in physics that an elementary particle ‘is’ an irreducible represen-
tation of the group, G, of ‘symmetries of nature’.

The paper that Ne’eman and Sternberg refer to by Wigner (1939) actually does not
deal with elementary particles as such, but is focused on a related mathematical
problem: the classification of all unitary representations of the Poincaré25 group.
The motivation that Wigner gives for this endeavour is that unitary representations
of the spacetime symmetry group can, to a certain extent, replace the equations
of motion for quantum systems that are placed in such a relativistic spacetime.26

Hence, he argues, by enumerating all possible unitary representations of the space-
time symmetry group, one gets a classification of all equations of motion, i. e. all
possible dynamics in relativistic spacetime. Wigner proves in the paper that in or-
der to find all possible unitary representations of the Poincaré group, it suffices to
find the irreducible unitary representations (or short: irreps), as they serve as the
building blocks for all other representations. Then he shows that the irreducible
representations of the Poincaré group can be classified by only two parameters:
m ∈ R, σ ∈ 1

2Z, which thus can be used as labels for the representations and are
physically interpreted as the mass and spin of the particle that is described by the
representation.27

This is a short characterization of what is often referred to as “Wigner’s concep-
tion of particles”.28 The other parameters of elementary particles in the standard
model, like charge and color-charge, arise in a similar fashion from other symmetry
groups, called internal symmetries. In the following, I shall describe how one ex-
tends Wigner’s account to the other properties of elementary particles, giving a brief
account of why representations in general, and irreps in particular can characterize
those physical systems. We will see that we can take quantum systems in particle
physics to be modelled simply by group representations, which provide both the
Hilbert space as well as the algebra of observables—instead of specifying H and A
separately. We will also see that the notions of tensor product and direct sum carry
over accordingly.

25In the paper, Wigner refers to what we nowadays call the “Poincaré group” as the “inhomoge-
neous Lorentz group,” whereas the “homogeneous” Lorentz group is what is known today simply
as the Lorentz group.

26The short argument is that the Poincaré group includes the time-translations of a system
which, of course, need to agree with the dynamics of the system and vice versa. I shall not deal
with the details of this here, but refer to Roberts (2022, Ch. 4).

27Note, that not all possible irreps are physically meaningful, cf. Sternberg (1995, p. 147f).
28For a more detailed overview see e. g. Kuhlmann (2010, pp. 87ff.).
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5.2 Symmetries and representations

Symmetry groups are used in mathematics to describe the structure of objects by col-
lecting transformations that leave that structure invariant. The above-mentioned
Poincaré group P is the symmetry group of Minkowski spacetime, which is the
mathematical representation of spacetime according to special relativity, that is,
R4 equipped with the Lorentz metric, often written as R1,3. P contains the trans-
formations of R1,3 that leave the Lorentz-distance between two spacetime points
invariant: it comprises translations in space and time, rotations in space, parity
and time reversal, and so-called Lorentz boosts, which describe the transition of
a reference frame at rest to one moving at a constant speed. Similarly, the group
of unitary operators on a Hilbert space U(H) contains the operators that preserve
the Hilbert space structure (that is, its linear vector space structure and the inner
product).29 Hence, if H is used to model a quantum system, U(H) can be viewed
as the symmetry group of the quantum system itself.

Consider now a quantum system with spatio-temporal degrees of freedom, that
is, a position in spacetime. Those degrees of freedom cannot be arbitrarily imple-
mented in the state space, because they must respect the structure of spacetime
itself. That is, we expect the symmetries of spacetime to be reflected in how the
spatio-temporal degrees of freedom are implemented in the Hilbert space represen-
tation of the quantum system. This leads to the demand that the symmetries of
spacetime shall not alter the basic structure of the quantum system under consid-
eration. In other words, we expect the symmetries of spacetime to correspond to
symmetries of the quantum system.

Mathematically, this connection between spacetime and quantum symmetries
is expressed by way of unitary group representations:30 A group representation is a
homomorphism from a group G to the operators on a vector space, and if this vector
space is a Hilbert space and all operators in the image of the map are unitary, it
is called a unitary representation: π : G → U(H). That is, π is a group-structure
preserving map realizing abstract symmetry transformations in G as (not necessarily

29In fact not only unitary but also anti-unitary operators preserve the full Hilbert space structure.
However, only the unitary operators form a group and if one uses projective representations (see
below), the distinction becomes void. For a more thorough explanation see e. g. Roberts (2022,
Section 3.4).

30Actually, the relevant representations are not the unitary ones but the projective represen-
tations. This is a technical subtlety that does not bear any conceptual significance but would
complicate our treatment significantly. We therefore, as is customary in philosophical treatments
of this matter, stick to unitary representations.
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distinct) concrete unitary operators on H.
Requiring H to carry a representation of the Poincaré group thus gives us the

means to say formally that a system has a position in spacetime. Conversely, if we
have a quantum system whose Hilbert space carries a representation of the Poincaré
group, then some of the symmetries of this quantum system can be readily inter-
preted as being implementations of the spacetime symmetries, connected to how the
spatio-temporal degrees of freedom of the system are implemented in H.31 Thus, we
arrive at what Roberts (2022, Chapter 2) calls the representation view: a quantum
system has spatio-temporal degrees of freedom if and only if its Hilbert space carries
unitary representations of the Poincaré group.32

We can extend this to other, namely internal, degrees of freedom (or quantum
charges):33 the structure of the spaces in which they take their values should be
preserved in the description of a quantum system. For example, color charges take
values in a space whose structure group is SU(3), and so we expect a representation
of SU(3) on the Hilbert space of any quantum system that is said to have color
charges. Just as in the case of spatio-temporal degrees of freedom we thus say that
a quantum system has a given degree of freedom if and only if its Hilbert space
carries a representation of the symmetry group of the space that this degree of
freedom takes its values in. One might call this the general representation view.

Carrying a unitary representation has two main consequences for the descrip-
tion of a quantum system: on the one hand, it implements the assumption that
a system has certain degrees of freedom, as just discussed. On the other hand, it
fixes a property that remains invariant under the symmetry transformations, namely
the possible representations the Hilbert space carries—a property, which, obviously,
cannot be changed by application of a symmetry transformation on that space.34

Hence, if one can label all the unitary representations of a group, then one can label
the various quantum systems having those degrees of freedom and use these labels
as the quantum numbers describing the structure of a system—as we have already
seen in the case of the Poincaré group, where the labels are identified as mass and

31Note, that this argument can also be run in the converse direction: by systematizing the
invariance behaviour of physical systems we can infer the symmetries of spacetime, see also Roberts
(2022, Ch. 5).

32Or the Galilean group, if we are in a non-relativistic spacetime setting; see Castellani (1998)
and Lévy-Leblond (1963).

33Cf. Roberts (2022, p. 179).
34Technically, these invariants can be identified with the eigenvalues of so-called Casimir opera-

tors that commute with all other symmetries in a given representation—and in the case of irreps
below, will be multiples of the identity.
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spin; in the case of internal symmetry groups, we get the other quantum charges,
like color charge. This shows how the quantum numbers are not numbers, but in
fact labels of group representations.35

So by specifying the quantum numbers of a system, one determines a Hilbert
space H, together with a set of unitaries π(G) ⊆ U(H) on it. But this is not
everything one gets: one can also construct a corresponding algebra of observables
from the group representation structure. To be more precise, one can look at the
group’s Lie algebra,36 whose generators will give rise to self-adjoint operators via
the lie algebra representation,37 which in turn can be used to generate an algebra of
observables. This way, the available observables derive only from the global structure
group defining the system’s available degrees of freedom. Hence, we take the general
representation view to imply that the labels of a symmetry group fully specify the
structure of a quantum system: the available states (the Hilbert space) as well as
the algebra of observables, which thus consists of all and only of combinations of
observables that are determined by the assumed degrees of freedom.

In sum, the ontology of the standard model is captured by the relevant symmetry
groups. The Poincaré group describes spatio-temporal degrees of freedom, giving
rise to the quantum charges of mass and spin; the internal symmetry groups U(1)
and SU(2) together describe the electroweak degrees of freedom and give rise to weak
isospin and weak hypercharge; and the internal symmetry group SU(3) describes
color-related degrees of freedom characterizing the color quantum number. It is in
this way that the “symmetry group of nature” provides a “definition” of the different
types of elementary particles.

35Note the connection between the charge and the degrees of freedom: saying that the electron
has color charge 1 expresses that the electron is in the 1-representation of SU(3), from which it
follows that it does not have any color-related degrees of freedom. Whereas a quark, which is in
the 3-representation of SU(3), does indeed have color degrees of freedom.

36The Lie algebra of a Lie group is an algebra associated to the group, representing infinites-
imal group transformations near the identity. See Fuchs and Schweigert (1997, Ch. 4) for basic
definitions.

37A Lie algebra representation is, similarly to a group representation, a structure preserving map
into the operators of a Hilbert space. There is a one-to-one correspondence between unitary group
representations and Lie algebra representations for so-called simply connected groups. SU(n) are
all simply connected, for the Poincaré group and U(1) there are separate arguments why we get
operators representing the measurable properties associated to the degrees of freedom of a quantum
system from the symmetry transformations.
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5.3 Irreducible representations as fundamental systems

First, note that we can define the direct sum of group representations analogously
to the case of Hilbert spaces and algebras of observables: given π1 : G → U(H1)
and π2 : G → U(H2) their direct sum is a new representation, Π: G → U(H1 ⊕ H2)
where g 7→ π1(g) ⊕ π2(g). Note that in general U(H1) ⊕ U(H2) ⊊ U(H1 ⊕ H2). We
will define the tensor product of group representations similarly in Section 6.

Then, a unitary38 representation π : G → U(H) is called irreducible (or, as
already mentioned, an irrep) just in case there are no proper non-trivial subspaces
of H that are invariant under the operators in π(G), that is, if there are no subspaces
that themselves would furnish a representation of G.39 Irreps have a very important
property: as mentioned above, Wigner showed that the irreps of P function as basic
building blocks for all other unitary representations of P . To be more precise, he
found that any representation of the Poincaré group is isomorphic to a direct sum
of irreps. The Peter-Weyl theorem40 proves the same for another important class
of groups, the so-called compact Lie groups—all the internal symmetry groups that
come up in particle physics are of this type. That is, all relevant symmetry groups
in particle physics have the property that any of their unitary representations can
be decomposed into a direct sum of irreps.

Hence, irreps can be considered fundamental amongst the representations of a
given group according to the metaphysician’s definition of a minimal basis, as given
in section 2: they are the basic building blocks of all other representations of that
group, with respect to a priority relation given by the composition based on the direct
sum of group representations. It is easy to see that irreps can further be considered
fundamental according to the second account of fundamentality discussed above:
they are independent (again, in the metaphysician’s sense) because they cannot be
the direct sums of other representations.

If we combine this formal sense of fundamentality with the general represen-
tation view set out in the subsection before, we get the following: every kind of
quantum system in particle physics is given by a group representation (irreducible
or reducible). By the above-mentioned theorems by Wigner and Peter-Weyl, any
such system is decomposable into a direct sum of irreps. Hence, every system in

38The definition holds for any group representations, but we restrict our attention to unitary
ones.

39More precisely: there exists no closed subspace V ≤ H such that ∀ψ ∈ V ∀g ∈ G : π(g) · ψ ∈ V
except for V = H and V = {0}.

40See e. g. Sternberg (1995, p. 179).
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particle physics is either irreducible or decomposable into a direct sum of irreps. On
the representation view, those component parts correspond to component systems
carrying the specified degrees of freedom. Overall, we can say that the decom-
position into a direct sum reflects a decomposition of the physical system into its
fundamental parts. Following “Wigner’s definition”, those fundamental components
are the elementary particles.

Note that the resulting notion of decomposition is relative to the choice of
the symmetry group G. This might be viewed as an advantage in that it allows
for a bespoke notion of fundamentality depending on what properties of systems
we are interested in—for example, one can capture the idea that something is not
decomposable with respect to certain properties, while still being decomposable with
respect to a bigger set of properties. On the other hand, one could see this as a
disadvantage, because it does not guarantee, strictly speaking, an ultimate notion
of fundamentality—one can always introduce a larger symmetry group, and this will
lead to a new set of irreps.

However, I view this more as an expression of the fact that we might in the
future discover that systems, which were previously considered fundamental, turn
out to actually be compound systems. This was the case with atoms, that were once
thought to be what their name suggests—indivisible—but are now considered to be
compound systems composed of various “elementary” particles. With respect to
a “full” symmetry group, describing—in the words of Ne’eman and Sternberg—all
“symmetries of nature”, the notion of fundamentality would be ultimate in the sense
of including all possible properties that can be used to discern parts of systems.

I will not take a position here on the question of whether such a full group is
discoverable. For my purposes it is enough to conclude that the theorems by Peter-
Weyl and Wigner provide a decomposition relation given by the direct sum of irreps,
that explains the particle ontology of the Standard Model and is distinct from the
decomposition relation arising from the tensor product construction.

Putting everything together, it was shown in this section that, based on the
representation view, a quantum system in particle physics can be described by a
unitary representation of the structure groups of the degrees of freedom that the
system is assumed to have, which in turn specifies the state space and algebra of
observables of the system. This allows a decomposition of the system into a direct
sum of irreps, which thus can be interpreted as the fundamental components of
that system, since the irreps cannot be decomposed any further on the direct sum
decomposition account.
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6 Incompatible Decompositions

In the previous section I showed how the direct sum of group representations arises
naturally in the context of the standard model of particle physics. Now we shall
also apply the tensor product construction to group representations and then see
how these two decomposition procedures can disagree. We start by defining the
tensor product for group representations, and then consider the example of addition
of angular momenta from elementary quantum mechanics. I will, however, present
it slightly differently from how it is usually done in textbooks, to highlight the
discrepancy between the two possible decompositions. I will conclude the section
with some philosophical considerations following from what I have shown so far,
namely that it is not possible for metaphysics (and philosophy of physics) to simply
assume that particle physics gives us a unique conception of how everything is made
of elementary particles.

Similar to the direct sum of group representations, the tensor product of group
representations π1,2 : G → B(H1,2) is given by the representation Π: G → B(H1) ⊗
B(H2) such that Π(g) = π1(g) ⊗ π2(g). This construction agrees with the ordinary
tensor product of Hilbert spaces, however, the algebra of observables obtained from
the tensor product of the group representations is distinct from the tensor product
of the individual algebras of observables. In general, it won’t be the case that
if πi(G) = B(Hi) that the algebra of the compound system will again be the all
bounded operators, i. e. Π(G) ̸= B(H). This is a crucial difference to the simple
tensor product algebras of observables: it allows for both the direct sum and tensor
product decompositions to be available in the same circumstances—namely when
the representation is reducible, which necessitates that the algebra of observables is
not the full B(H).

I will reuse the example that we have encountered before, which is system that is
described by the Hilbert space C4. Assume, that it carries a reducible representation
of SU(2), the group cahracterising the structure of quantum systems with angular
momentum.41 It now turns out that there are two ways this representation could
be broken down into parts, given by irreps: either into the tensor product of two
spin-1

2 systems, or into the direct sum of a spin-0 and a spin-1 system. That is, if
we are handed a quantum system, whose Hilbert space is C4 and whose algebra of
observables has a specific form, together with the information that this quantum

41This information suffices to fix both the Hilbert space as well as algebra of observables, since
there is only one reducible representation of SU(2) on C4.
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system has a SU(2)-structured degree of freedom, we have two possible ways to
distinguish parts of this system: on the one hand as two statistically independent
spin-1

2 subsystems, and on the other hand as the mixture of a spin-0 with a spin-1
system. Neither the formalism nor any observable in the algebra can tell which one
is the “correct” decomposition.

The connection to the addition of angular momenta42 becomes clear when con-
sidering the total angular momentum of an electron in an atom, which is described
as a degree of freedom with structure group SU(2). It has two contributions: the
spin of the electron itself, as well as the orbital angular momentum arising from
it being bound to the nucleus of the atom. These are two independent degrees of
freedom, both described by SU(2) and hence modelling the system as the tensor
product of two spin-1

2 system is appropriate. However, the total angular momen-
tum of the system is not fully determined: it can either be that of a spin-0 or that
of a spin-1 system, depending on whether the two angular momentum vectors are
aligned or not. That is, from this point of view we are dealing with a mixed system,
the parts of which are a spin-0 and a spin-1 system. Hence, this system, depending
on which fundamentality relation one takes, is either composed of two spin-1

2 sys-
tems or a spin-0 and a spin-1 system. Particle physics considerations alone cannot
straight-forwardly give a unique answer to the question of what the fundamental
constituents of this system are.

That the two decompositions will disagree in other cases too is easy to see, at
least for systems described by finite-dimensional Hilbert spaces: the dimension of
a tensor products equals the product of the dimensions of the constituent spaces,
whereas the dimension of the direct sum equals the sum of the dimensions of the
summands. For some structure groups there even exist formulas to calculate the dif-
ferent decompositions, known generally as the Clebsch-Gordan formulas:43 consider
again the case of SU(2). We already saw that the irreps can be indexed by half-
integer numbers, so formally one can write 1

2 to refer to the spin-1
2 representation.

Exploiting the fact that we thus can use half-integer numbers to refer to the irreps,
42See e. g. David J. Griffiths (1994, Section 4.4.3, pp. 165ff)
43As seen before, such a decomposition is possible for any compact Lie group. Explicit formulas

and calculations exist for several special cases relevant in particle physics, most notably SU(n).
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one can formally write for X, Y ∈ 1
2N the Clebsch-Gordan Formula for SU(2):44

X ⊗ Y ∼=
|X+Y |⊕

Z=|X−Y |
Z,

where Z increases in steps of 1. That is, the tensor product of irreps X and Y

is isomorphic in the sense of group representations to the direct sum of irreps Z,
where Z ranges from |X − Y | to X + Y and where X, Y, Z are now taken to be just
ordinary numbers from the half-integers. For our example of two spin-1

2 systems,
or, equivalently, a spin-0 and a spin-1 system, the formula reads: 1

2 ⊗ 1
2

∼= 0 ⊕ 1. All
representations involved here—X, Y and all of the Z—are irreducible.

It is important to note that the above analysis does not merely say that the
mathematical formalism is ambiguous as to how the physical system “actually”
breaks down into parts, and a proper physical inspection will show whether we are
dealing with a system that is either a mixture of its fundamental parts or consists
of independent fundamental parts. Instead, the theory itself cannot tell us which of
the possibilities is “more real” and from the perspective of the theory both of them
are equally valid views about the system.

One might feel inclined to object that my argument shows that the same mathe-
matical framework can be used to describe different physical situations: for example
both sound waves and electromagnetic waves can be described by the same wave
equations. In the same way, one might argue, the two decomposition relations above
describe two different physical situations that just happen to be described by the
same mathematical framework. However, the situation in particle physics is dif-
ferent from the case of waves: in the latter situation, there are other physical and
metaphysical ways to differentiate the systems—for example, by observing that the
waves propagate in different materials. In the case of particle physics, however, the
group representation (including the Hilbert space as well as the algebra of observ-
ables) is supposed to be a complete description of the physical system. Hence,if one
takes the theory as it is, there is no additional information about the systems to be
gained that could distinguish the cases.

44See for this case Baker and Halvorson (2010, p. 103) or more generally Larkoski (2019, Section
3.3).
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7 Conclusion

I have argued that, contrary to popular opinion, particle physics does not provide
an account of “the fundamental” because one cannot uniquely determine the fun-
damental parts of the systems described by particle physics. This was shown by
discussing two possible ways of decomposing a quantum system, the direct sum and
the tensor product. In the context of group representations, which is a widely used
framework within particle physics, the contrast is especially stark: the same system
is decomposable into different “fundamental” constituents, depending on the decom-
position procedure one chooses. This shows that there is an element of convention
and choice necessary to determine the basic building blocks of the material world.
This runs against the idea that particle physics simply presents us with an account
of the fundamental.

F
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